Acoustic wavefield evolution as function of source location perturbation
نویسنده
چکیده
The wavefield is typically simulated for seismic exploration applications through solving the wave equation for a specific seismic source location. The direct relation between the form (or shape) of the wavefield and the source location can provide insights useful for velocity estimation and interpolation. As a result, I derive partial differential equations that relate changes in the wavefield shape to perturbations in the source location, especially along the Earth’s surface. These partial differential equations have the same structure as the wave equation with a source function that depends on the background (original source) wavefield. The similarity in form implies that we can use familiar numerical methods to solve the perturbation equations, including finite difference and downward continuation. In fact, we can use the same Green’s function to solve the wave equation and its source perturbations by simply incorporating source functions derived from the background field. The solutions of the perturbation equations represent the coefficients of a Taylor’s series type expansion of the wavefield as a function of source location. As a result, we can speed up the wavefield calculation as we approximate the wavefield shape for sources in the vicinity of the original source. The new formula introduces changes to the background wavefield only in the presence of lateral velocity variation or in general terms velocity variations in the perturbation direction. The approach is demonstrated on the smoothed Marmousi model.
منابع مشابه
Interferometry by deconvolution, Part 1— Theory for acoustic waves and numerical examples
Interferometry allows for synthesis of data recorded at any two receivers into waves that propagate between these receivers as if one of them behaves as a source. This is accomplished typically by crosscorrelations. Based on perturbation theory and representation theorems, we show that interferometry also can be done by deconvolutions for arbitrary media and multidimensional experiments. This i...
متن کاملAn experimental study of spatial evolution of statistical parameters in a unidirectional narrow-banded random wavefield
[1] Unidirectional random waves generated by a wavemaker in a 300-m-long wave tank are investigated experimentally. Spatial evolution of numerous statistical wavefield parameters is studied. Three series of experiments are carried out for different values of the nonlinear parameter e. It is found that the frequency spectrum of the wavefield undergoes significant variation in the course of the w...
متن کاملMonitoring and characterizing corrosion in aluminum using Lamb waves and attached sensors [6532-52]
Corrosion is detrimental to the structural integrity of many critical components, and ultrasonic methods are routinely used in the field to make thickness measurements at points of interest. However, is often difficult to assess the true extent of corrosion damage because of the likelihood of missing small corroded areas and the difficulty in mapping the extent of large corroded areas without a...
متن کاملDamage Detection in Plate Structures Using Sparse Ultrasonic Transducer Arrays and Acoustic Wavefield Imaging
A methodology is presented for health monitoring and subsequent inspection of critical structures. Algorithms have been developed to detect and approximately locate damaged regions by analyzing signals recorded from a permanently mounted, sparse array of transducers. Followup inspections of suspected flaw locations are performed using a dual transducer ultrasonic approach where a permanently mo...
متن کاملBORN INVERSION BY WAVEFIELD BACKPROPAGATION 1 by Bernard
The inverse scattering problem for an acoustic medium is formulated by using the variable background Born approximation. A constant density acoustic medium is probed by a wide-band point source, and the scattered field is observed along a curved receiver array located outside the region where the medium velocity is different from the assumed background velocity function. The solution that we pr...
متن کامل